Order and Disorder in Multiscale Substitution Tilings Yotam Smilansky, Rutgers UCLA Analysis & PDE Seminar, 2022 joint with Caltech and USC

Partially based on joint work with Yaar Solomon

# Plan of Talk

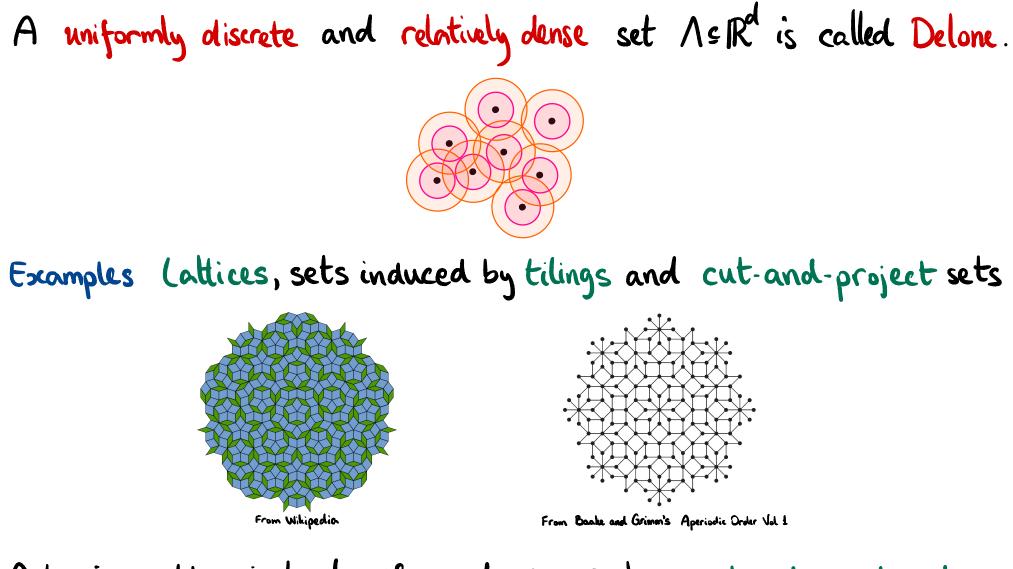
- · Introduction
- · Multiscale substitution tilings
- Main results

| Ħ  |  |      |
|----|--|------|
|    |  |      |
| 阳口 |  |      |
|    |  |      |
|    |  |      |
|    |  | -++- |
|    |  |      |
| 阳  |  |      |
|    |  | 钳    |
|    |  |      |
|    |  | 钳    |



# A uniformly discrete and relatively dense set $\Lambda \subseteq \mathbb{R}^d$ is called Delone.





A basic problem is to classify and measure how ordered or disordered a given Delone set is, compared to a lattice.

#### Lattice-like Properties

For  $x \in \Lambda$ , r > 0 the r-patch of  $\Lambda$  at x is  $P_{\Lambda,r}(x) = (\Lambda - x) \cap B(0,r)$ 

• Finite local complexity (FLC):  $\forall r > 0$  #{ $P_{\Lambda,r}(x) | x \in \Lambda$ } <  $\infty$ 

From Baake and Grimm's Aperiodic Order Vol 1

#### Lattice-like Properties

For  $x \in \Lambda$ , r > 0 the r-patch of  $\Lambda$  at x is  $P_{\Lambda,r}(x) = (\Lambda - x) \cap B(0,r)$ 



Repetitivity: V r>o ∃ R=R(r) so that every R-ball contains a copy of every r-patch. Linear repetitivity:
 R(r) is linear. Uniform patch frequency: patches appear in well-defined frequencies.

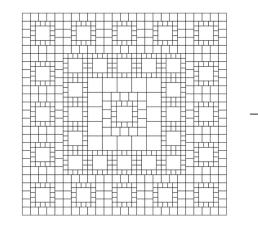
#### Lattice-like Properties

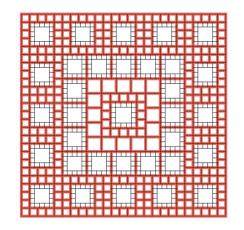
For  $x \in \Lambda$ , r > 0 the r-patch of  $\Lambda$  at x is  $P_{\Lambda,r}(x) = (\Lambda - x) \cap B(0,r)$ 

 Finite local complexity (FLC): V r>0 #{P<sub>A,r</sub>(x) | x ∈ A} < ∞
 </li>
 From Baake and Grimm's Aperiodic Order Vol 1



Repetitivity: V r>o ∃ R=R(r) so that every R-ball contains a copy of every r-patch. Linear repetitivity:
 R(r) is linear. Uniform patch frequency: patches oppear in well-defined frequencies.





Spaces and Dynamical Systems of Delone Sets Set  $X_{n} = \{ \{ \Lambda + t \mid t \in \mathbb{R}^{d} \}$ , where the closure is with respect to a natural topology on Delone sets (induced by the Hausdorff metric restricted to centered balls) Λ is (almost) repetitive (=) The dynamical system (X<sub>Λ</sub>, R<sup>d</sup>) is

minimal (every orbit is dense)

• (almost) linear repetitivity => unique ergodicity (unique invariant measure)

(Radin '92, Solomyak'97, Damanik '01, Lagarias '03, Frettlöh '14) Wolff '92, Solomyak'97, Lenz '01, Pleasants '03, Richard '14)

# Plan of Talk

- · Introduction
- · Multiscale substitution tilings
- Main results

| Ħ   |     |                     |            |
|-----|-----|---------------------|------------|
|     |     |                     |            |
| ł   |     |                     |            |
|     |     |                     |            |
|     |     |                     | Ŧ          |
|     |     |                     |            |
|     |     |                     |            |
|     |     |                     | H          |
|     |     |                     |            |
|     |     |                     |            |
|     |     |                     | I          |
|     |     |                     | Ī          |
|     |     |                     |            |
| н   |     |                     |            |
|     |     |                     | İ          |
| - F |     |                     | Ì          |
| н   |     |                     |            |
|     |     |                     |            |
|     |     |                     | H          |
|     |     |                     | Η.         |
|     |     |                     | _ <b>r</b> |
|     | -   |                     |            |
|     |     |                     |            |
|     |     |                     | Ħ          |
|     | - F |                     |            |
|     |     |                     | F          |
|     |     |                     | F          |
| Ħ   |     |                     |            |
| 묘   |     |                     |            |
| 盽   |     |                     |            |
|     |     | ┽╫┽╫┽╫┽┽┽┫┅╝╛┈╿┑╽╹╎ |            |

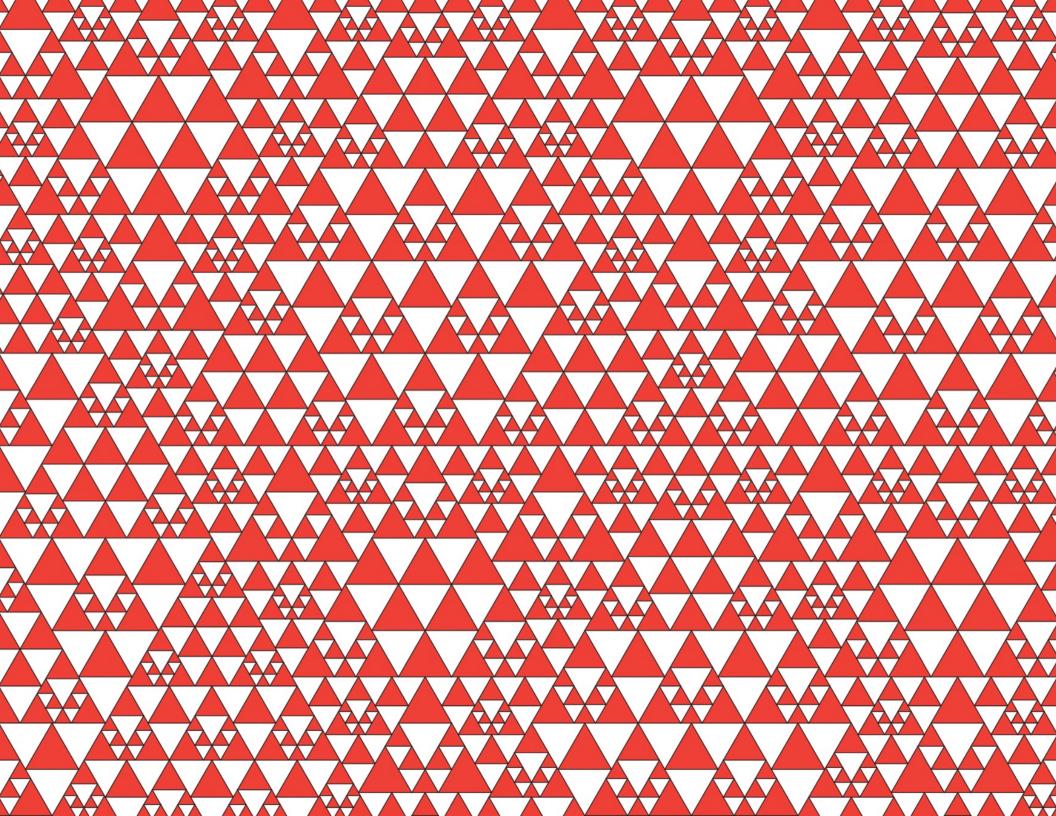
## Substitution Tilings

A tiling is a collection of tiles with disjoint interiors that covers  $\mathbb{R}^d$ . A substitution rule on a set of prototiles is a tessellation of each prototile by rescaled prototiles, with a fixed scale  $\in (0,1)$ Repeated applications of the substitution rule followed by a rescaling define larger and larger patches.

#### Incommensurable Multiscale Substitution Tilings

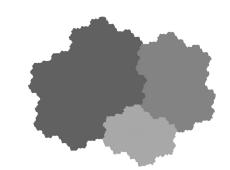
A multiscale substitution scheme  $\sigma$  in  $\mathbb{R}^d$  consists of a substitution rule on unit volume prototiles  $T_{1,...,}T_n$ , where various different scales appear and satisfy a simple incommensurabily condition.

A time-dependent substitution semiflow  $F_t$  defines a family of patches: At time t=0  $F_t(T)=T$ , and as t increases the patch is inflated by  $e^t$  and tiles of volume>1 are substituted.

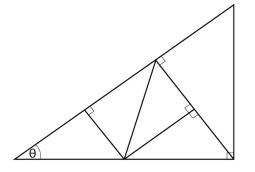


#### Some Predecessors

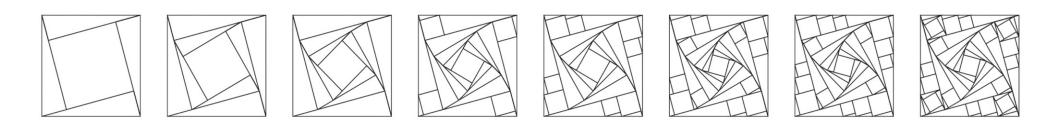
· Rauzy's fractal '81



multiple (but commensurable) scales

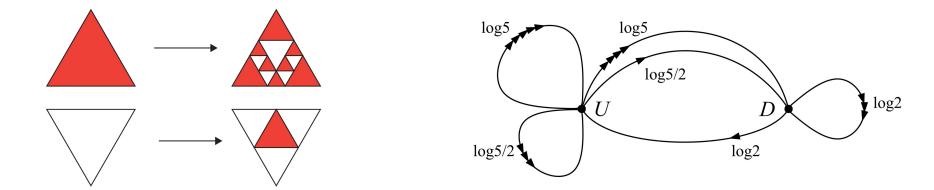


- Conway and Radin's pinwheel tiling '94
   0 = arctan 1/2 => same triangle incommensurable directions
- · Sadun's generalized pinwheel tilings '98
- a-Kakutani sequences in [0,1] '76 and 1-a always split longest interval
- · S´zo: multiscale substitution Kakutani sequences of partitions



#### The Associated Graph Go

A directed weighted graph is defined according to 6



Vertices model the prototiles

Edges model the tiles appearing in the substitution rule with Lengths = log(1/scale)

6 is incommensurable if  $G_{\sigma}$  contains two closed paths of lengths  $\frac{\alpha}{6} \notin Q$ . Incommensurable multiscale substitution schemes generate a new distinct class of tilings of  $\mathbb{R}^{d}$ .

# Plan of Talk

- · Introduction
- · Multiscale substitution tilings
- Main results

|     | Ļ                 |   |  |
|-----|-------------------|---|--|
|     |                   |   |  |
|     |                   |   |  |
|     |                   |   |  |
|     |                   |   |  |
|     |                   |   |  |
|     |                   |   |  |
|     |                   |   |  |
|     |                   |   |  |
|     | 명사원 명사원 명사원 명사원 1 | Ц |  |
|     |                   |   |  |
|     |                   |   |  |
| н   |                   |   |  |
|     |                   |   |  |
| - F |                   |   |  |
| Н   |                   |   |  |
|     |                   |   |  |
|     |                   |   |  |
|     |                   |   |  |
| H   |                   |   |  |
|     |                   | Ħ |  |
| Η-  |                   |   |  |
|     |                   | ŧ |  |
|     |                   |   |  |
|     |                   | ŧ |  |
|     |                   |   |  |
|     |                   |   |  |
|     |                   |   |  |
|     |                   |   |  |
|     |                   |   |  |

Counting in Multiscale Substitution Tilings  
Substitution # tiles in patches = entries of powers of the substitution matrix S  

$$A = A$$
 =>  $S = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$   
Multiscale  $\{Tiles in F_{E}(T_{i})\} \leftrightarrow \{Directed walks of length t\}$   
Example the  $\frac{1}{3}$ - Kakutani scheme in  $R$ :  
 $\frac{1}{3} = \frac{V_{3}}{V_{3}} = \frac{V_{3}}{V_{3}}$  log  $3$   $Oog^{3}/2$   
the patches  $F_{i}(I), F_{log_{2}}(I), F_{2log_{2}}(I)$  and their respective walks

Counting in Multiscale Substitution Tilings  
Theorem (SS1 źi, S > źi, relying on Kiro, Smilansky × 2 '20)  
#{tiles in 
$$F_{t}(T)$$
} =  $\frac{v^{T}(S_{e} - V_{e})1}{v^{T}H_{e}1} \cdot \underbrace{e^{dt}}_{Ue(F_{t}(T))} + \underbrace{ERROR}_{TERM}$ ,  $t \to \infty$   
combinatorics  $(S_{\sigma})_{ij} = \sum_{in T_{e}} 1$  # reds in white  
matrix  $(V_{\sigma})_{ij} = \sum_{in T_{e}} 1$  # reds in white  
 $S_{e} = \begin{pmatrix} 8 & 5 \\ 1 & s \end{pmatrix}$   
volume  
matrix  $(V_{\sigma})_{ij} = \sum_{in T_{e}} J_{o}U(T)$  total red area in white  
matrix  $(V_{\sigma})_{ij} = \sum_{in T_{e}} J_{o}U(T)$  total red area in white  
matrix  $(H_{\sigma})_{ij} = \sum_{in T_{e}} -Vol(T) \cdot \log Jol(T)$   $U_{\sigma} = \begin{pmatrix} \frac{12}{4} \frac{1}{\sqrt{2}} \frac$ 

• Delone sets  $\Lambda, \Gamma \in \mathbb{R}^d$  are bounded displacement (BD) equivalent if  $\exists$  bijection  $\eta: \Lambda \to \Gamma$  that moves every point a bounded distance.

A is uniformly spread if it is BD to aZ<sup>d</sup> for some a>o

· Not all Delone sets are uniformly spread

22 • • • • • • • • • • • • • 2

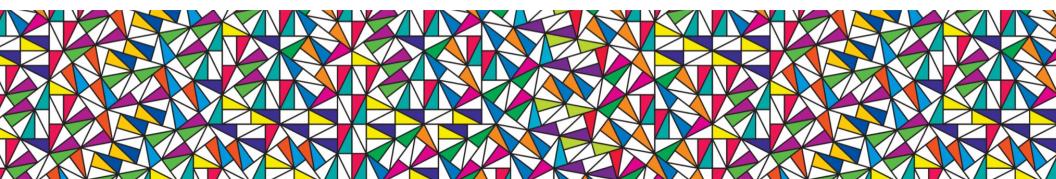
• Delone sets  $\Lambda, \Gamma \in \mathbb{R}^d$  are bounded displacement (BD) equivalent if  $\exists$  bijection  $\eta: \Lambda \to \Gamma$  that moves every point a bounded distance.

• •

A is uniformly spread if it is BD to aZ<sup>d</sup> for some a>o

•

Sets associated with tilings with a single tile are uniformly spread
 => lattices & periodic sets (Duncou, Oguey '90, Hall's marriage theorem)



Laczkovich'92 For a Delone set ACIRd the following are equivalent:

- · A is uniformly spread
- There exist a, C > 0 so that  $\forall A \in Q_d = \{ \text{finite unions of lattice cubes} \}$

Jol(F.(T))

 $\left(\frac{\mathsf{ERROR}}{\mathsf{TERM}} \ge C \frac{e^{\mathsf{d}t}}{\mathsf{+}^{\mathsf{k}}}\right)$ 

discrepancy  $|\#(A \cap \Lambda) - \alpha \cdot v_0|(A)| \leq C \cdot v_0|_{d_1}(\partial A)$ 

=> Incommensurable multiscale substitution tilings are never uniformly spread.

Laczkovich'92 For a Delone set ACIRd the following are equivalent:

· A is uniformly spread

d

• There exist a, C > 0 so that  $\forall A \in Q_d = \{ \text{finite unions of lattice cubes} \}$ 

 $Jol(F_{t}(T))$ 

$$| (\partial A) - \alpha \cdot u | | (A \cap A) - \alpha \cdot u | (A) | \leq C \cdot u |_{d-1} (A)$$

=> Incommensurable multiscale substitution  $\begin{pmatrix} \text{ERROR} \\ \text{TERM} \end{pmatrix} \geq C \frac{e^{dt}}{t^k}$ tilings are never uniformly spread.

Theorem (SS2'21) let X be a minimal space of Delone sets.

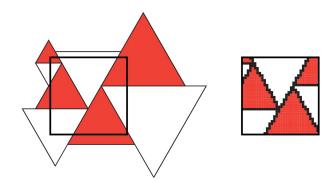
- · Either I NeX uniformly spread, and then every NeX is such.
- Or X contains continuously many distinct BD class representatives.

=> Incommensurable tiling spaces contain continuously many BD classes.

#### Dynamics in Multiscale Substitution Tilings

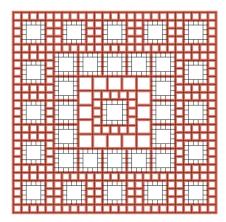
Theorem (SS121) Let T be an incommensurable tiling in  $\mathbb{R}^d$ and  $(X_T, \mathbb{R}^d)$  with  $\mathbb{R}^d$  acting by translations.

- $F_t(T-x) = F_t(T) e^t x$  for  $t \ge 0$ ,  $x \in \mathbb{R}^d$  (horospheric and geodesic)
- $(X_T, \mathbb{R}^d)$  is minimal => T is almost repetitive
- · almost repetitivity is not linear (SS3 > 21)
- · (X<sub>T</sub>, R<sup>d</sup>) is uniquely ergodic
  - T has uniform patch frequencies
  - · Lee-Solomyak's 19 "pixelization"



Dynamics in Multiscale Substitution Tilings Theorem ( $SS^{\frac{3}{2}}$  22) Let T be an incommensurable tiling in  $\mathbb{R}^d$ and consider the semiflow  $F_{\overline{t}}$  on  $X_T$  (scenery flow)

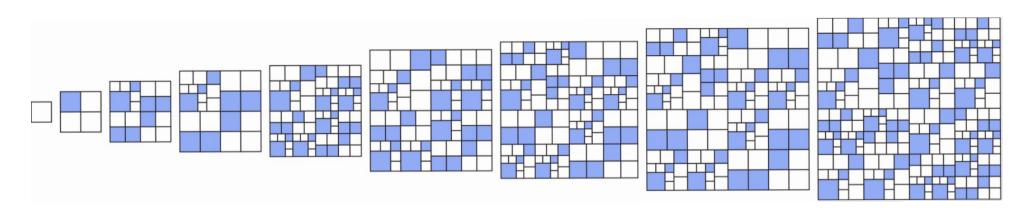
- · there exist dense orbits.
- periodic orbits of  $F_t \implies$  self similar tilings
- Prime orbit theorem  $\pi_{\sigma}(t) \sim \frac{e^{dt}}{dt}$ ,  $t \rightarrow \infty$



where  $\pi_{\sigma}(t) = * \{ \text{ orbits } \tau \text{ with minimal period } \lambda(t) \leq t \}$   $(A_{\text{barry}}, Pollicott)$   $(I - e^{-\lambda(\tau)s})^{-1} = \frac{1}{det(I - M_{\sigma}(s))}$  where  $(M_{\sigma}(s))_{ij} = \sum_{\substack{T = \sigma \neq t_{ype_j} \\ in = \tau_i}} \int Jol(T)^{s}$ 

# Counting in Multiscale Substitution Tilings Theorem (SSI 21, S > 21, relying on Kiro, Smilansky × 2 '20) Tiles and patches appear in a dense set of scales => not FLC Moreover, we give explicit formulas for asymptotic densities of:

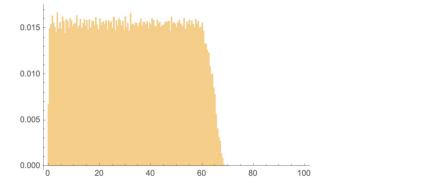
- # { tiles of type and vole [a,b] in Ff (T)}
- volume (U{ tiles of type and vol ([a,b] in F<sub>t</sub>(T)))
- · Expected values for random partitions



# Counting in Multiscale Substitution Tilings Theorem (Szizi, relying on Kiro, Smilansky ×2 '20) • Gap distribution A = Delone set of tile boundaries in a 1-dim tiling $\frac{\#\{\text{Neighbors in } \Lambda \cap [-N,N] \text{ of distance } (a,b]\}}{\#\{\Lambda \cap [-N,N]\}} \longrightarrow \int_{\sigma}^{b} \frac{\sigma^{T}C_{\sigma}(x)1}{\sigma^{T}H_{\sigma}1} dx$ where $(C_{\sigma}(x)) = \sum_{T \text{ of type}} \left\{ \begin{array}{c} \frac{\text{vol } T}{x^2} & \text{vol } T < x < 1 \\ 0 & \text{otherwise} \end{array} \right\}$ · Numerics for pair correlations are consistent with Poisson process

list = {0, 3^10}; i = 1; Do[While[list[[i+1]] - list[[i]] > 1,

list = Insert[list, list[[i]] + (list[[i + 1]] - list[[i]]) / 3, i + 1]], {i, 91005}];
gaps = Flatten[Table[N[Differences[list, 1, j]], {j, 1, 100}]];
Histogram[gaps, {0, 100, 0.5}, "PDF"]



averagegap = 1/(-(1/3) \* Log[1/3] - (2/3) \* Log[2/3]);

list = Accumulate[RandomVariate[ExponentialDistribution[averagegap], 90 000]];
gaps = Flatten[Table[N[Differences[list, 1, j]], {j, 1, 100}]];
Histogram[gaps, {0, 100, 0.5}, "PDF"]

